Functions of Several Variables

Sketching

- Level Curves
- Sections

Partial Derivatives

$$
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}
$$

on every open set on which f and the partials,

$$
\frac{\partial f}{x}, \frac{\partial f}{y}, \frac{\partial^{2} f}{\partial y \partial x}, \frac{\partial^{2} f}{\partial x \partial y}
$$

are continuous.

Normal Vector

$$
\mathbf{n}= \pm\left(\begin{array}{c}
\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x} \\
\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y} \\
-1
\end{array}\right)
$$

Error Estimation

$$
f\left(x_{0}+\Delta x, y_{0}+\Delta y\right) \approx f\left(x_{0}, y_{0}\right)+\left[\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right] \Delta x+\left[\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right] \Delta y
$$

Chain Rules

Example, $z=f(x, y)$ with $x=x(t), y=y(t)$

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Integration

Integration by Parts

Integrate the chain rule,

$$
u(x) v(x)=\int u^{\prime}(x) v(x) d x+\int v^{\prime}(x) u(x) d x
$$

Integration of Trig Functions

For $\int \sin ^{2} x d x$ and $\int \cos ^{2} x d x$ remember that,

$$
\cos 2 x=\cos ^{2} x-\sin ^{2} x
$$

Integrals of the form $\int \cos ^{m} x \sin ^{n} x d x$, when m or n are odd, you can factorise using $\cos ^{2} x+\sin ^{x}=1$ and then using,

$$
\begin{aligned}
& \int \sin ^{k} x \cos x d x=\frac{1}{k+1} \sin ^{k+1} x+C \\
& \int \cos ^{k} x \sin x d x=\frac{-1}{k+1} \cos ^{k+1} x+C
\end{aligned}
$$

Reduction Formulae

Partial Fractions

Example, assume

$$
\frac{2 x-1}{(x+3)(x+2)^{2}}=\frac{A}{x+3}+\frac{B x+C}{(x+2)^{2}}
$$

Now multiply both sides by $(x+2)(x+3)$ and equate coefficients.

ODE's

Separable ODE

Separate then integrate.

Linear ODE

The ODE:

$$
\frac{d y}{d x}+f(x) y=g(x)
$$

has solution,

$$
y(x)=\frac{1}{u(x)}\left[\int u(x) g(x) d x+C\right]
$$

where,

$$
u(x):=e^{\int f(x) d x}
$$

Exact ODE

The ODE:

$$
\frac{d y}{d x}=-\frac{M(x, y)}{N(x, y)}
$$

or as,

$$
M(x, y) d x+N(x, y) d y=0
$$

is exact when,

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Assume solution is of the form,

$$
F(x, y)=c
$$

with,

$$
M=\frac{\partial F}{\partial x} \quad N=\frac{\partial F}{\partial y}
$$

Integrate to find two equations equal to $F(x, y)$, then compare and find solution from assumed form.

Second Order ODE's

The ODE:

$$
a y^{\prime \prime}+a y^{\prime}+b y=f(x)
$$

For the homogeneous case $(f(x)=0)$
the characteristic equation will be $a \lambda^{2}+b \lambda+c=0$
If the characteristic equation has,
Two Distinct Real roots, (replace the λ 's with the solutions to the characteristic eqn.)

$$
y=A e^{\lambda x}+B e^{\lambda x}
$$

Repeated Real roots,

$$
y=A e^{\lambda x}+B x e^{\lambda x}
$$

Complex roots,

$$
y=e^{\alpha x}(A \cos \beta x+B \sin \beta x)
$$

where,

$$
\lambda=\alpha \pm \beta i
$$

For the For the homogeneous case,

$$
y=y_{h}+y_{p}
$$

$$
y=\text { solution to homogeneous case }+ \text { particular solution }
$$

Guess something that is in the same form as the RHS.
If $f(x)=P(x) \cos a x($ or $\sin)$ a guess for y_{p} is $Q_{1}(x) \cos a x+Q_{2}(x) \sin a x$

Taylor Series

Taylor Polynomials

For a differentiable function f the Taylor polynomial of order n at $x=a$ is,

$$
P_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Taylor's Theorem

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)
$$

where,

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

Sequences

$$
\lim _{x \rightarrow \infty} f(x)=L \Longrightarrow \lim _{n \rightarrow \infty} a_{n}=L
$$

essentially says that when evaluating limits functions and sequences are identical.
A sequence diverges when $\lim _{n \rightarrow \infty} a_{n}= \pm \infty$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist.

Infinite Series

Telscoping Series
Most of the terms cancel out.
n-th term test (shows divergence)
$\sum_{n=1}^{\infty} a_{n}$ diverges if $\lim _{n \rightarrow \infty} a_{n}$ fails to exist or is non-zero.

Integral Test

Draw a picture. Use when you can easily find the integral.
p - series
The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges otherwise.

Comparison Test

Compare to a p-series.

Limit form of Comparison Test

Look at $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ where b_{n} is usually a p-series.
If $=c>0$, then $\sum a_{n}$ and $\sum b_{n}$ both converge or both diverge.
If $=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
If $=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

Ratio Test

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho
$$

The series converges if $\rho<1$, the series diverges if $\rho>1$ or ρ is infinite, and the test is inconclusive if $\rho=1$.

Alternating Series Test

The series,

$$
\sum_{n=1}^{\infty}(-1)^{n+1} u_{n}=u_{1}-u_{2}+u_{3}-u_{4}+\ldots
$$

converges if,

1. The u_{n} 's are all >0,
2. $u_{n} \geq u_{n+1}$ for all $n \geq N$ for some integer N, and
3. $u_{n} \rightarrow 0$.

Absolute Convergence

If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Taylor Series

Taylor Polynomials consist of adding a finite number of things together, whereas Taylor Series is an infinite sum.
The Maclaurin series is the Taylor series at $x=0$.

Power Series

More Calculus

Average Value of a Function

$$
\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

Arc Length

$$
\begin{aligned}
& \text { Arc length over }[a, b]=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \\
& s=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \quad \text { (parametric) }
\end{aligned}
$$

Speed

$$
\frac{d s}{d t}=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}
$$

Surface Area of Revolution

$$
\begin{gathered}
2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x \\
2 \pi \int_{a}^{b} y(t) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \quad \text { (parametric) }
\end{gathered}
$$

