Enumeration

Counting Methods

Let $\#(n)$ denote the number of ways of doing n things. Then,

$$
\begin{gathered}
\#(A \text { and } B)=\#(A) \times \#(B) \\
\#(A \text { or } B)=\#(A)+\#(B)
\end{gathered}
$$

(n items, r choices)
Ordered selection with repetition, n^{r}.
Ordered selection without repetition, $P(n, r)=\frac{n!}{(n-r)!}$.
Unordered selection without repetition, $C(n, r)=\frac{P(n, r)}{r!}$.
$|A \cup B|=|A|+|B|-|A \cap B|$
Ordered selection with repeition; WOOLLOOMOOLOO problem.
Unordered selection with repetition; dots and lines,

$$
\binom{n+r-1}{n-1}
$$

Pigeonhole principle. If you have n holes and more than n objects, then there must be at least 1 hole with more than 1 object.

Recurrences

Formal Languages

λ represents the empty word. w is just a variable (it is not part of the language)

First Order Homogeneous Case

The recurrence,

$$
a_{n}=r a_{n-1} \text { with } a_{0}=A
$$

has solution

$$
a_{n}=A r^{n} .
$$

Second Order Recurrences

$$
a_{n}+p a_{n-1}+q a_{n-2}=0
$$

has characteristic,

$$
r^{2}+p r+q=0
$$

If α and β are the solutions to the characteristic equation, and if they are real and $\alpha \neq \beta$ then,

$$
a_{n}=A \alpha^{n}+B \beta^{n} .
$$

If $\alpha=\beta$ then,

$$
a_{n}=A \alpha^{n}+B n \beta^{n} .
$$

Guesses for a particular solution

LHS	Guess
3	c
$3 n$	$c n+d$
3×2^{n}	$c 2^{n}$
$3 n 2^{2}$	$(c n+d) 2^{n}$
$(-3)^{n}$	$c(-3)^{n}$

