Enumeration

Counting Methods

Let #(n) denote the number of ways of doing n things. Then,

$$#(A \text{ and } B) = #(A) \times #(B)$$

 $#(A \text{ or } B) = #(A) + #(B)$

(n items, r choices)Ordered selection with repetition, n^r .

Ordered selection without repetition, $P(n,r) = \frac{n!}{(n-r)!}$.

Unordered selection without repetition, $C(n,r) = \frac{P(n,r)}{r!}$.

$$|A\cup B|=|A|+|B|-|A\cap B|$$

Ordered selection with repeition; WOOLLOOMOOLOO problem.

Unordered selection with repetition; dots and lines,

$$\binom{n+r-1}{n-1}$$

Pigeonhole principle. If you have n holes and more than n objects, then there must be at least 1 hole with more than 1 object.

Recurrences

Formal Languages

 λ represents the *empty word*. w is just a variable (it is not part of the language)

First Order Homogeneous Case

The recurrence,

$$a_n = ra_{n-1}$$
 with $a_0 = A$

has solution

$$a_n = Ar^n.$$

Second Order Recurrences

$$a_n + pa_{n-1} + qa_{n-2} = 0$$

 $r^2 + pr + q = 0$

has characteristic,

If
$$\alpha$$
 and β are the solutions to the characteristic equation, and if they are real and $\alpha \neq \beta$ then,

$$a_n = A\alpha^n + B\beta^n.$$

If $\alpha = \beta$ then,

$$a_n = A\alpha^n + Bn\beta^n.$$

LHS	Guess
3	с
3n	cn+d
3×2^n	$c2^n$
$3n2^{2}$	$(cn+d)2^n$
$(-3)^{n}$	$c(-3)^n$

Guesses for a particular solution